Opto

Gait

HIGH-TECH SOLUTIONS ​TO SUPPORT WELL-​BEING

運動機能の改善を客観的に評価し、個別に最適なリコン​ディショニングプログラムを提案!クライアントや選手​の微細な変化を見逃さず、効果的な改善への道筋を描く​サポートツールです。

Opto

Gait

Opto

Gait

が提供するソリューション

01

Graph Icon

Real Time Assessment

結果は全てリアルタイムでフィードバックさ​れ、選手や指導者が数値を確認し、瞬時に行動​に移すことが可能です。

Learn More

Less Than Symbol

02

do not touch

Contactless

好きなシューズ、本番の環境に近い状態で動作​できる非接触の赤外線センサーは、選手本来の​ポテンシャルを損なわず計測可能です

Learn More

Less Than Symbol

03

Walking

Gait analysis

歩行周期だけでなく、歩隔の計測や筋電図との​同期機能を搭載した歩行分析に特化した革新的​な光​学式分析機器です

Learn More

Less Than Symbol
Abstract Blue Background

Opto

Gait

高度な歩行分析機器

  1. OptoGaitで行えるテスト全て実施可能
  2. 歩行レポートの作成
  3. 歩隔の評価
  4. 歩隔分析用ブーストバー接続可能
  5. 歩行分析用アニメーションの参照
  6. 筋電図との出力

VS

Opto

JUMP

NEXT

ランニング・ジャンプ分析機器

  1. ジャンプ計測
  2. ランニング・スプリント計測
  3. 歩行分析
  4. 反応テスト
  5. タッピングテスト
  6. トレッドミルテスト

本体の仕様や特徴、ジャンプやスプリントなどの各種テストの詳細は

OptoJumpNextのページを参照ください。

https://sandccorporation.com/optojumpnext

Click Icon
OptoGait System

Measurement

3〜5分で設置から計測まで完了

既存テストも充実

Analysis

動画や数値を分析し対象者を評価。​動画とデータの同期機能も搭載。

Reports

様々なレポートが用意されており、​即座にレポートを作成し、共有可能

Abstract Blue Background

Opto Gaitでのみ使用できる機能

歩行レポート

歩隔分析

筋電図への出力

White Geometric Abstract Background

一瞬で明らかになる歩行周期

Opto Gaitの間を歩くだけで、歩行周期が自動で判別され、​数値やグラフで表示されます。レポート化にも対応してお​り、歩行したクライアントにわかりやすい形で、すぐにデ​ータをフィードバック可能です。

また、レポート上の問題点となる部分をクリックすると、​映像で「歩行中の、どの筋が使われている、どのフェー​ズ」かが一目でわかるよう表示されます。

Abstract Blue Background

2D歩行分析

OptoGaitを縦横に並べる2Dシステムによって歩行の歩隔を​見ることができます。歩隔は足の横幅を意味し、この数値​が安定しないと転倒リスクが高いと言われています。転倒​リスクそのものの指標は算出されないものの、変動係数と​いう数値でバラつき自体を評価することができます。

通常のTX・RXバーの場合で2Dシステムを形成した場合​の歩行エリアは縦が最長6mですが、専用ブーストバーを使​用すると直線12ⅿまでの計測が可能です。

※トレッドミル上での歩行テストでは2Dシステムを使用で​きないため、歩隔を計測することはできません。

White Geometric Abstract Background

測定距離を広げるブーストバー

通常のTXバーは最大6mまで赤外線を照射可能ですが、より多くの歩数を計測するためにOptoGait限定の特別なブーストバ​ーが用意されています。ブーストバーはパワーが2倍のトランスミッションダイオードを内蔵した特殊なTXバーで、トリミ​ングシステムが偏光を修正することで最大13mの2Dシステムを適用可能です。

Max 13m

Abstract Blue Background

より多くのデータを少ない本数で計測可能

限られたバーの本数でも歩行を追跡することが可能です。テスト首領設定をソフトウェアコマンドなどに​設定しておくと、エリア範囲外に出ても、折り返して歩行やランニングの分析が可能です。

White Geometric Abstract Background

筋電図へ出力

OptoGaitはバーチャルフットスイッチとして、EMGその​他のバイオメカニカル分析システムにアナログデータを出​力可能です。(アウトプットディレイは300msec)。

付属の専用ケーブルを使用し、NORAXSON社製筋電図に​トリガーデータを出力することができます。これは歩行中​に正しいタイミングで使われるべき筋が活動しているかど​うかを評価することができます。

White Geometric Abstract Background

筋電図とOptoGaitの同期例

White Geometric Abstract Background
Abstract Blue Background

最大2台同時撮影による映像分析

PCとウェブカメラを接続し、撮影した動画を数値を同期して確認可能です。各動画のシンクロポイントを設定で​きるため、動作や数値の比較が非常に簡便に行えます。表示するデータやグラフなどはカスタム可能です。

White Geometric Abstract Background

スタート足の設定

センサー内に最初に入った足を指定することで、左右それぞれの数値および左右差を確認できます。ウェブカメラを使用​を接続していると自動で下図のように自動でポッポアップが表示され、ワンクリックで指定可能です。ウェブカメラがな​い場合は、手動で左右を指定することも可能です。歩行テスト、スプリント・ランニングテスト、ホッピングテストで使​用可能です。

White Geometric Abstract Background

ワンクリックで選択

Abstract Blue Background

専用キャリーケース

1〜2mまで収納できるシングルバックと5mまで収納できるキャリーケースが用意されています。トレーニング現場や遠征先への​持ち運びも楽々行えます! 輸送中の衝撃も軽減してくれます。

※キャスターが搭載されているのは5m用バックのみです。

▼シングル用バッグ

▲5m用キャリーケース

OptoGait シングルセット

  • OptoGait TX×1
  • OptoGait RX×1
  • 接続用ケーブル
  • 充電ケーブル
  • ウェブカメラ×1
  • カメラ固定用三脚×1
  • 専用シングルバック
  • 日本語マニュアル

OptoGait 延長シングルセット

  • OptoGait 延長 TX×1
  • OptoGait 延長 RX×1
  • 接続用コネクター×2

OptoGait 5mセット

  • OptoGait TX×5
  • OptoGait RX×5
  • 2Dケーブル×1
  • 接続用コネクター×4
  • 接続用ケーブル
  • 充電ケーブル
  • ウェブカメラ×1
  • カメラ固定用三脚×1
  • 専用キャリーケース
  • 日本語マニュアル

販売価格は、お問い合わせください

OptoGait仕様

寸法:インターフェースバー:1100m×100mm×100mm

   延長バー:1000m×100mm×45mm

|重量:インターフエースバー:2kg、延長バー:1.5kg

|継続動作時間:4時間充電で連続10時間使用可能

|対応気温:0° C/+35°C

|保管可能温度:~25℃〜+75℃

|最大接続距離:100 m

|センサー:赤外線センサー

|センサーの高さ:地上3mm

|光学式センサー内蔵数:96個/m

|赤外線波長:890mm

|TXバーとRXバー間の最大距離:6m

|操作端末:Windows PC (日本語化対応)

使用PC推奨スペック


最低スペック

推奨スペック

OS

Windows 10

Windows 10/11(64bit)

CPU

i3/i5

i7/i9

RAM

4/8 GB

16/32 GB

ハードディスク容量

40GB

160GB

ディスプレイ解像度

1024×768

1920×1080 以上

USBポート数

1

3

OptoJump+webcam2台

White Geometric Abstract Background

先行研究一覧


1 . Luis E Roche-Seruendo , Felipe García-Pinillos , Joana Haicaguerre , Ana V Bataller-Cervero , Víctor M Soto-Hermoso , Pedro Á Latorre-Román

2 . BERNAL, Antonio Gomez; BECERRO-DE-BENGOA-VALLEJO, Ricardo; LOSA-IGLESIAS, Marta Elena. Reliability of the OptoGait portable photoelectric ​cell system for the quantification of spatial-temporal parameters of gait in young adults. Gait & posture, 2016, 50: 196-200.

3 . HEALY, Aoife; LINYARD-TOUGH, Kimberley; CHOCKALINGAM, Nachiappan. Agreement between the spatiotemporal gait parameters of healthy ​adults from the optogait system and a traditional three-dimensional motion capture system. Journal of biomechanical engineering, 2019, 141.1.

4 . ALVAREZ, Daniel, et al. Validation of the photoelectric Optogait system to measure racewalking biomechanical parameters on a treadmill. ISBS ​Proceedings Archive, 2017, 35.1: 253.

5 . NIGHTINGALE, Christopher J.; MITCHELL, Sidney N.; BUTTERFIELD, Stephen A. Validation of the timed up and go test for assessing balance ​variables in adults aged 65 and older. Journal of aging and physical activity, 2018, 27.2: 230-233.

6 . JAÉN-CARRILLO, Diego, et al. Test–retest reliability of the OptoGait system for the analysis of spatiotemporal running gait parameters and lower ​body stiffness in healthy adults. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 2020, ​234.2: 154-161.

7 . GOMMANS, Lindy NM, et al. Prolonged stance phase during walking in intermittent claudication. Journal of vascular surgery, 2017, 66.2: 515-522.

8 . SÁNCHEZ-TRIGO, Horacio, et al. Validation of a Wearable Accelerometer-Based Activity Monitor for Use in Future Osteoporosis Prevention ​Programs. Sustainability, 2020, 12.6: 2187.

9 . FOKKEMA, Tryntsje, et al. Reliability and validity of ten consumer activity trackers depend on walking speed. Medicine & Science in Sports & ​Exercise, 2017, 49.4: 793-800.

10 . BABAJIĆ, Fuad, et al. THE INFLUENCE OF REACTIVE POWER AND DYNAMIC BALANCE ON THE CHANGE OF DIRECTION SPEED-PLANNED ​AGILITY. Sport Scientific & Practical Aspects, 2019, 16.1.

11 . SIMONI, Laura, et al. Relationship between Lower Limb Kinematics and Upper Trunk Acceleration in Recreational Runners. Journal of Healthcare ​Engineering, 2020, 2020.

12 . MORIWAKI, Kenta, et al. Association of serum bone-and muscle-derived factors with age, sex, body composition, and physical function in ​community-dwelling middle-aged and elderly adults: a cross-sectional study. BMC musculoskeletal disorders, 2019, 20.1: 276.

13 . KIM, Hae Won; NAM, Ki Seok; SON, Sung Min. Effects of Virtual Reality Horse Riding Simulator Training Using a Head-Mounted Display on Balance ​and Gait Functions in Children with Cerebral Palsy: A Preliminary Pilot Study. The Journal of Korean Physical Therapy, 2019, 31.5: 273-278.

14 . GARCÍA-PINILLOS, Felipe, et al. Absolute reliability and concurrent validity of the Stryd system for the assessment of running stride kinematics at ​different velocities. Journal of strength and conditioning research, 2018.

15 . ROCHE-SERUENDO, Luis E., et al. Lack of influence of muscular performance parameters on spatiotemporal adaptations with increased running ​velocity. The Journal of Strength & Conditioning Research, 2018, 32.2: 409-415.

16 . LEE, Kyeongjin. Effects of single and dual tasks during walking on spatiotemporal gait parameters of community-dwelling older. Journal of ​physical therapy science, 2017, 29.10: 1874-1877.

17 . GARCÍA-PINILLOS, Felipe, et al. Agreement between spatiotemporal parameters from a photoelectric system with different filter settings and ​high-speed video analysis during running on a treadmill at comfortable velocity. Journal of biomechanics, 2019, 93: 213-219.

18 . HATCHETT, Andrew; ALLEN, Charles; SMITH, Marzania. The effect of a textured shoe insert on running gait. Age (y), 2017, 20.1.69: 20.60-1.78.

19 . BEHRENS, Martin, et al. Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions. ​Journal of science and medicine in sport, 2016, 19.2: 170-176.

20 . TANISHIMA, Shinji, et al. Association between sarcopenia and low back pain in local residents prospective cohort study from the GAINA study. ​BMC musculoskeletal disorders, 2017, 18.1: 452.

21 . PAEZ-MOGUER, Joaquin, et al. Variation of spatiotemporal parameters in school children carrying different backpack loads: a cross sectional ​study. Scientific reports, 2019, 9.1: 1-8.

22 . MATSUMOTO, Hiromi, et al. Sarcopenia is a risk factor for falling in independently living Japanese older adults: A 2‐year prospective cohort study ​of the GAINA study. Geriatrics & gerontology international, 2017, 17.11: 2124-2130.

23 . DUNCAN, Ashley L., et al. Spatiotemporal Parameters of Treadmill Walking While Dual-Tasking in Those With Chronic Ankle Instability Versus ​Uninjured Controls. Athletic Training and Sports Health Care, 2019, 11.6: 264-272.

24 . DEFLANDRE, Dorian, et al. A comparison of 3D methods for identifying the stance phase in treadmill running for both rearfoot and forefoot ​runners. Journal of Sports Science, 2016, 4: 124-131.

25 . GARCÍA-PINILLOS, Felipe, et al. Does fatigue alter step characteristics and stiffness during running?. Gait & Posture, 2020, 76: 259-263.

26 . GARCÍA-PINILLOS, Felipe, et al. How does the slope gradient affect spatiotemporal parameters during running? Influence of athletic level and ​vertical and leg stiffness. Gait & posture, 2019, 68: 72-77.

27 . MATSUMOTO, Hiromi, et al. Association between speed of sound of calcaneal bone assessed by quantitative ultrasound and sarcopenia in a ​general older adult population: A cross-sectional study. Journal of Orthopaedic Science, 2019, 24.5: 906-911.

28 . SON, Dong-Wook; HWANG, Sujin. Robotic-assisted gait training applied with guidance force for balance and gait performance in persons with ​subacute hemiparetic stroke. Physical Therapy Rehabilitation Science, 2017, 6.3: 106-112.

29 . LYNN, Rebekah, et al. Step-Counting Validity of Wrist-Worn Activity Monitors During Activities With Fixed Upper Extremities. Journal for the ​Measurement of Physical Behaviour, 2020, 1.aop: 1-7.

30 . LEE, Soonhyun; LEE, Kyeongjin; SONG, Changho. Gait training with bilateral rhythmic auditory stimulation in stroke patients: a randomized ​controlled trial. Brain sciences, 2018, 8.9: 164.

31 . BAILLIEUL, Sebastien, et al. Continuous positive airway pressure improves gait control in severe obstructive sleep apnoea: A prospective study. ​PloS one, 2018, 13.2.

32 . GARCÍA-PINILLOS, Felipe, et al. Minimum time required for assessing step variability during running at submaximal velocities. Journal of ​biomechanics, 2018, 80: 186-195.

33 . GARCÍA-PINILLOS, Felipe, et al. How do spatiotemporal parameters and lower-body stiffness change with increased running velocity? A ​comparison between novice and elite level runners. Journal of Human Kinetics, 2019, 70.1: 25-38.

34 . ROCHE-SERUENDO, L. E., et al. Do sex and body structure influence spatiotemporal step characteristics in endurance runners?. Science & Sports, ​2019, 34.6: 412. e1-412. e9.

35 . SZYMCZAK, Maria, et al. Gait pattern in patients with peripheral artery disease. BMC geriatrics, 2018, 18.1: 52.

36 . POREMBA, A. V.; MAKUBUYA, T.; MUWONGE, H. The Effects of Manual Therapy and PRIMFIT Unstable Surface Balance Training on Walking Gait ​Cycle Post an Acute Grade 3 Inversion Ankle Sprain: A Case Study. Sports Injr Med: JSIMD-126. DOI, 2018, 10.

37 . D'ALBA, Riccardo; GOLLIN, Massimiliano. Morpho-functional asymmetries and risk of injury in right-handed basketball players: an acute study. In: ​VII Cong. Naz. SISMES, Ricerca e formazione applicate alle scienze motorie e sportive. 2016. p. 26-26.

38 . GARCÍA-PINILLOS, Felipe, et al. How long is required to undertake step variability analysis during running? A pilot study. Isokinetics and Exercise ​Science, 2019, 27.1: 63-67.

39 . RITZMANN, Ramona, et al. High intensity jump exercise preserves posture control, gait, and functional mobility during 60 days of bed-rest: an RCT ​including 90 days of follow-up. Frontiers in physiology, 2018, 9: 1713.

40 . ROCHE-SERUENDO, Luis E., et al. Effects of different percentages of body weight support on spatiotemporal step characteristics during running. ​Journal of sports sciences, 2018, 36.13: 1441-1446.

41 . YU, Kyung-Hoon; KANG, Kwon-Young. Functional electrical stimulation with augmented feedback training improves gait and functional ​performance in individuals with chronic stroke: a randomized controlled trial. The Journal of Korean Physical Therapy, 2017, 29.2: 74-79.

42 . BEULERTZ, Julia, et al. Limitations in ankle dorsiflexion range of motion, gait, and walking efficiency in childhood cancer survivors. Cancer ​nursing, 2016, 39.2: 117-124.

43 . PORTARO, Simona, et al. Can Individuals with Down Syndrome Benefit from Hippotherapy? An Exploratory Study on Gait and Balance. ​Developmental neurorehabilitation, 2019, 1-6.

44 . IOSA, Marco, et al. Stability and harmony of gait in patients with subacute stroke. Journal of medical and biological engineering, 2016, 36.5: 635-​643.

45 . LEE, Junyoung; LEE, Kyeongjin; SONG, Changho. Speed-interactive treadmill training using smartphone-based motion tracking technology ​improves gait in stroke patients. Journal of motor behavior, 2017, 49.6: 675-685.

46 . RÖSSLER, R., et al. A new injury prevention programme for children’s football–FIFA 11+ Kids–can improve motor performance: a cluster-​randomised controlled trial. Journal of sports sciences, 2016, 34.6: 549-556.

47 . KIM, Doo-Ho, et al. The Effect of Public Health Physical Program on Paretic Side in Environmental Water Quality. Toxicology and Environmental ​Health Sciences, 2019, 11.3: 252-256.

48 . LOUREIRO C, Ana Paula, et al. Skeletal muscle metabolism after stroke: a comparative study using treadmill and overground walking test. 2017.

49 . STARHOLM, Inger Marie, et al. Energy expenditure of transfemoral amputees during floor and treadmill walking with different speeds. Prosthetics ​and orthotics international, 2016, 40.3: 336-342.

50 . LEE, Kyeongjin. Speed-Interactive Pedaling Training Using Smartphone Virtual Reality Application for Stroke Patients: Single-Blinded, ​Randomized Clinical Trial. Brain sciences, 2019, 9.11: 295.

51 . WARSCHAWSKI, Yaniv, et al. Correlation between preoperative imaging parameters and postoperative basic kinematics-based functional ​outcome in patients with tibial plateau fractures. Clinical Biomechanics, 2019, 65: 87-91.

52 . GIL-CALVO, Marina, et al. Effect of custom-made and prefabricated foot orthoses on kinematic parameters during an intense prolonged run. PloS ​one, 2020, 15.3: e0230877.

53 . MATSUMOTO, Hiromi, et al. Gait variability analysed using an accelerometer is associated with locomotive syndrome among the general elderly ​population: The GAINA study. Journal of Orthopaedic Science, 2016, 21.3: 354-360.

54 . WAHL, Yvonne, et al. Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy ​expenditure during sports conditions. Frontiers in physiology, 2017, 8: 725.

55 . VERNILLO, Gianluca, et al. An extreme mountain ultra-marathon decreases the cost of uphill walking and running. Frontiers in physiology, 2016, 7: ​530.

56 . SCHUERMANS, Joke, et al. Deviating running kinematics and hamstring injury susceptibility in male soccer players: Cause or consequence?. Gait ​& posture, 2017, 57: 270-277.

57 . DEMIREL, A., et al. Moderate Disability Has Negative Effect on Spatiotemporal Parameters in Patients with Chronic Low Back Pain. Gait & Posture, ​2020.

58 . LUCAS-CUEVAS, Ángel G., et al. The effect of visual focus on spatio-temporal and kinematic parameters of treadmill running. Gait & posture, 2018, ​59: 292-297.

59 . BEHRENS, Martin, et al. Mental fatigue increases gait variability during dual-task walking in old adults. The Journals of Gerontology: Series A, ​2018, 73.6: 792-797.

60 . MORAN, Uria, et al. Functional electrical stimulation following anterior cruciate ligament reconstruction: a randomized controlled pilot study. ​Journal of neuroengineering and rehabilitation, 2019, 16.1: 89.

61 . HATCHETT, Andrew, et al. The Effect of a Curved Non-Motorized treadmill on Running Gait Length, Imbalance and Step Angle. 2018.

62 . GARCÍA-PINILLOS, Felipe, et al. How do Amateur Endurance Runners Alter Spatiotemporal Parameters and Step Variability as Running Velocity ​Increases? A Sex Comparison. Journal of Human Kinetics, 2020, 72.1: 39-49.

63 . LÜDER, Benjamin; KISS, Rainer; GRANACHER, Urs. Single-and Dual-Task Balance Training Are Equally Effective in Youth. Frontiers in psychology, ​2018, 9: 912.

64 . LEE, Haneul; LIM, Hyoungwon. Effects of Double-Taped Kinesio Taping on Pain and Functional Performance due to Muscle Fatigue in Young ​Males: A Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 2020, 17.7: 2364.

65 . LICHTENSTEIN, Eric, et al. Performance, stride characteristics, and muscle activity while running with a traditional compared to a newly ​developed running shoe. Kinesiology: International journal of fundamental and applied kinesiology, 2018, 50.Supplement 1: 126-132.

66 . LANGEARD, Antoine, et al. Reduced gait and postural stability under challenging conditions in fallers with upper limb fracture. Aging clinical and ​experimental research, 2019, 31.4: 483-489.

67 . LUM, Danny, et al. Effects of intermittent sprint and plyometric training on endurance running performance. Journal of sport and health science, ​2019, 8.5: 471-477.

68 . BALDUCCI, Pascal, et al. Comparison of level and graded treadmill tests to evaluate endurance mountain runners. Journal of sports science & ​medicine, 2016, 15.2: 239.

69 . WADA, Takashi; MATSUMOTO, Hiromi; HAGINO, Hiroshi. Customized exercise programs implemented by physical therapists improve exercise-​related self-efficacy and promote behavioral changes in elderly individuals without regular exercise: a randomized controlled trial. BMC public health, ​2019, 19.1: 917.

70 . IOSA, Marco, et al. The connection between anthropometry and gait harmony unveiled through the lens of the golden ratio. Neuroscience letters, ​2016, 612: 138-144.

71 . KIM, Kyung Hun, et al. Effects of progressive backward body weight suppoted treadmill training on gait ability in chronic stroke patients: A ​randomized controlled trial. Technology and Health Care, 2017, 25.5: 867-876.

72 . JIMÉNEZ-GARCÍA, José D., et al. Risk of Falls in Healthy Older Adults: Benefits of High-Intensity Interval Training Using Lower Body Suspension ​Exercises. Journal of aging and physical activity, 2019, 27.3: 325-333.

73 . SPRINGER, Shmuel; GOTTLIEB, Uri; LOZIN, Mariya. Spatiotemporal gait parameters as predictors of lower-limb overuse injuries in military training. ​The Scientific World Journal, 2016, 2016.

74 . SPRINGER, Shmuel; GOTTLIEB, Uri. Effects of dual-task and walking speed on gait variability in people with chronic ankle instability: a cross-​sectional study. BMC musculoskeletal disorders, 2017, 18.1: 316.

75 . MORIN, Vincent, et al. Gait analysis following medial opening-wedge high tibial osteotomy. Knee Surgery, Sports Traumatology, Arthroscopy, ​2018, 26.6: 1838-1844.

Abstract Blue Background

“Making the right decisions in your daily ​training can in the long run decide ​whether an athlete can have 15 good ​years instead of 10.”

Marcel Blaumann / CEO / Founder

White Geometric Abstract Background
Yasaka Pagoda and City Street at Sunset, Kyoto, Japan

お問い合わせ

〒604-0986

京都市中京区昆布屋町395 高山ビル3F

075-741-8380

info@sandcplanning.com